_ AD-A049 385 WISCONSIN UNIV MADISON MATHEMATICS RESEARCH CENTER F/6 12/1

BOUNDS FOR THE T=TAIL AREA.(U)
NOV 77 A P SOMS DAAG29~-75-C-0024

UNCLASSIFIED MRC-TSR-1806 NL '

END
DATE
FILMED
2w 78

- T




MRC Technical Summary Report #1806

BOUNDS FOR THE t-TAIL AREA

Andrew P. Soms

Raie o L

Mathematics Research Center
University of Wisconsin—Madison

610 Walnut Street
Madison, Wisconsin 53706

November 1977

Received September 27, 1977 ™

. Approved for public release
Distribution unlimited

Sponsored by

U. S. Army Research Office Graduate School
P.O. Box 12211 University of Wisconsin- i
Research Triangle Park Milwaukee

North Carolina 27709

T IEIIIVIII.




UNIVERSITY OF WISCONSIN -~ MADISON
MATHEMATICS RESEARCH CENTER

BOUNDS FOR THE t-TAIL AREA

Andrew P. Soms

Technical Summary Report # 1806
November 1977

ABSTRACT

The bounds of Birnbaum (1942), Gordon (1941),

Sampford (1953), and Tate (1953) for the upper tail area
of the normal distribution are; with some modifications,
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SIGNIFICANCE AND EXPLANATION

In order to use statistical tests it is necessarv to

have numerical values for the frequency distributions involved.

These are usually obtained from published tables. For com-
puter work it is often preferable to use simple approximate

algebraic formulae rather than storing tables or doing

numerical integration. Such formulae are often convenient also

when using a hand calculator. Approximate formulae are

particularly useful when upper and lower bounds can be given,

bracketing the exact value. These remarks apply particularly

to the "tails" of frequency distributions.
Bounds are well known for the normal distribution.

This paper develops analogous bounds for the t-distribution,

which is used, for example, when comparing means derived from

two different sets of experiments.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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Bounds for the t-Tail Area

Andrew P. Soms

1. Introduction

There are many approximations known to t-tail areas (Johnson and Kotz
1970, Chapter 27). Bounds, however, do not seem to have been considered,
even though they sometimes are more desirable. They are useful for bounding
the descriptive level of the t-test as well as theoretical considerations. For
the normal case bounds have been given in Johnson and Kotz (1970, Chapter 33).
The purpose of this paper is to extend, with some modifications, the results
of four papers on the normal distribution (Birnbaum 1942, Gordon 1941, Sampford
1953, and Tate 1953) to the t.

A brief review of the results for the normal distribution will provide

some motivation for the t. Let

00

and 1 - ¢ (x) = J ¢ (t)dt,
X

2
- -t7/2

o(t) = (@m M2 et/
where here and throughout it will be understood that x > 0. Then in the
normal case Mills' ratio Rx is defined by Rx = (1 - 9%x))/¢(x), and Rx is

used to obtain bounds because it has the well-known asymptotic expansion

o5 see (21-1)/x22*1 (1.1)

with the property that if the first n terms of (1.1) are summed, then the
error term (Rx-sum of first n terms) has the same sign as the first neglected

term and is less than it in absolute value. For the t, let

-(kel)/2 - T((k+1)/2)

£ (t) = ¢ (1 + t2/k)
I (k/2) (k)

1/2 °

k an integer > 1, and i
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?k(x) =1 - Fk(x) = Lj fk(t)dt.

Here the correct definition of Mills' ratio Rx is

R, = (F )/ (AnE/0E () = B (x)/2(x)

shown by Soms (1976) that Rx has the asymptotic expansion

- : e
R, - Z i 1-3 +=+ (2i-1)k Har s 4
i=0' (k+2) (k+4) ... (k+2i)x

(for simplicity the subscript k on g is omitted), since it was

(1.2)

with the same error property as for the normal, i.e., if (1.2) is summed to

n terms, then the error term has the same sign as the first neglected term

and is less than it in absolute value. In particular,

1 k
b S

1
% %
(k+2)x

It will be seen that in general these bounds can be improved.

2. Extension of Birnbaum's Bound

By integration by parts,

2 - (k-1)/2

2n+1 ) 2n k d )
I: t fk(t)dt "% J: t Eide” (1 + k) dt

o 2
k_ 20
k-1 k-1 %

(1.3)

2
2n-1 t k-2
X7+ %;J £,(x) + 2n .19 J " Qe O £ (t)dt, n < ==,

(2.1)




oo 2
2n -1 k-4 th~(k-1)/2 4 _
Ix t fk(t)dt E t T (1 + —k—) dt =

2 ) 2
k X k 2n-2 t k-1
=1 X (1 + —]-(—) fk(x) + (2n-1) T JX t a1+ —k—) fk(t)dt, n < g
(2.2)
Hence if k > 3, letting g(x) = (1 + xz/k)fk(x), n = 0 can be substituted in

(2.1) and n = 1 in (2.2) to give

[” tfk(t)dt = kg(x)/(k-1)

x
and
f: t7F, (1dt = kxg(x)/ (k-1) + k/(k-l)J°° (1 + t2/K) £ (D)dt, |
x |
or
((k-2)/(k-1)) J: tsz(t)dt = (k/(k-1)) (xg(x) + [: £, (t)dt),
or

f” t?E, ()dt = (K/(k-2)) (xg(x) + J £, (t)de).
X X

The Cauchy-Schwartz inequality

2 2 3
(fm tf, (1)dt)* < Jm t°f, (t)dt J £, (t)dt
X X X

gives
(kg(x)/ (k-1)% < (k/ (k-2)) (xg (x) + E fk(t)dt)(ﬁ £, ()dt), ,{
‘ or ?
: W) o2 x) < (r NSTRE I W ‘i
(k-1) x




200 /2
(k) (k'Z) X X e
( (k_l)Z g T) 5 _2— 5 f: fk(t)dt/g()() = Fk(X)/g(x) 7 (2.3)

which is the desired result.
Call the left-hand side of (2.3) the BL-bound. The known bound

(the AL-bound) is

1 k i
) S S (2.4)
X (k+2)x2

It is clear that near the origin the BL-bound is better (bigger is better for
lower bounds), while an examination of the limit of the ratio of the AL-bound
to the BL-bound as x + ® shows it to be bigger than one and hence the AL-bound

is better for large x.

3. Extension of Sampford's Bounds
In the course of subsequent development, some results on the S will be
needed and they are collected here for easy reference. From Johnson and

Kotz (1969, p. 6),
Flatl) = (2m)1/2 o@*1/2 ~048,/120 , B, <1, (3.1)

Using (3.1), upper and lower bounds on ¢y are now obtained. For the upper

bound, for k > 2,

r(kél * 4 y(k-1)/2 + 1/2 ~(k-1)/2 + 1/6(k-1)

S < LD/ (k=2)/2 * 1/2 _~(k-2)/2 172
- + - -
r(kiz . Danl/?  (&-2)/2) e (k)
(3.2)
k=2
g = A 0] ot
(k (k-2)) 172 el/2 (2m) 172 (k (k=2)) 1/ 2 (21)1/2




For the lower bound, for k > 2,

i wllm 1
et e D T :
k ((k_z)/z)(k-z)/z + 1/2 e-(k-Z)/Z + 1/6(k'2)(nk)1/2 ;
g (k-1) (1 + 1/(k-2)) K-2/2 . s
(k(k-2))17§ (2“)1/2 e1/2 + 1/6(k-2) %
Using (3.2) and (3.3) the following lemma is now proved.
Lemma 3.1: With Cy as above,
tc,’ <lore, <3, k21, (3.4) |
2 1/2
-2ck + (k+1)/2k > 0 or o < Cik#l)/k} /2, k> 1, (3.5)
and ‘
8.’ > (k-1)/k or ¢ > W22 (-1, k > 2. (3.5)
Proof of (3.4): It is verified directly that (3.4) holds for k=1, 2, and

Ll bigger than

5. For k > 4, note that both (k-1)/(k(k-2))1/? and e
one and decreasing functions of k and hence it suffices to observe that the
last expression of (3.2) evaluated for k=4 is < %-.

Proof of (3.5): Since ((k+1)/k)1/2 > 1, (3.5) follows immediately from

(3.4).

Proof of (3.6): It is verified directly that (3.6) is true for 2< k < 5.

For k > 6, using (3.3), it suffices to show that

(k-1) (1+1/ (k-2)) k-2)/2 . k-2
(k(k-2)) /2 () V2172 + 176(k-2) ~ 372,172 °

or, since ((k-1)/(k-2))"/2 > 1, that
(1+1/ (k-2)) K-D/2 5 [1/2,1/2 + 1/6(k-2) )

which is true for k=6 and hence for k > 6 since the left-hand side is an

increasing function of k and the right-hand side decreasing.




Let v(x) = 1/Rx. Then

A = V') = v ) - S xasa e <3k (3.7)

and the first result is that 0 < A(x) < 1 for k > 1 (here and throughout, "'"
means the derivative). In the normal case, Birnbaum's inequality is equivalent
to A(x) < 1 - for the t this is not so - in fact, it will be shown that A(x) < 1
gives a bound which is uniformly better than the BL-bound. Therefore, the method
of proof (the Cauchy-Schwartz inequality) used by Sampford and Birnbaum for the
normal case must be different for the t. It is instructive to give a different
proof for the normal which generalizes to the t. For the normal case,
VI(x) = A(x) = v(x) (V(x)-x) (recall that v(x) = (2m) }/2 e"‘z/z/(1-r°£2n)‘1/2 .
-t%/2 :

e dt)). Suppose for some x, A(x) > 1. Then there exists an x such that
A(x) > 1 and X' (x) = 0 since A(0) =(2/(2ﬂ)1/%2 <1 and from (1.1), for arbitrary
€ and x sufficiently large, A(x) < 1 + €. Now A'(x) = A(x) (V(x)-x) +
v(x)(A(x)-1). But from (1.1) v(x) > x, and hence A'(x) > 0, giving a contra-
diction. Returning to the t, we have

Theorem 3.1: Let A(x) be given by (3.7). Then 0 < A{x) < 1 for k > 1.

Proof: For convenience, A(x) and Vv(x) will be denoted by A and v. From

(1.3) v > x, and hence A > 0. Suppose X > 1 for some x. Then there exists an

x such that X > 1 and X' = 0, since from (1.2) liz A =1 and from (3.4)

X
A(0) = 4ck2 < 1. Now
e e L e b n
(1+x"/k) 1+x“/k | 1+x°/k
_ v | - 1x/K) (2v- (ke 1)x/K) K-
1+x2/k L 1+ x°/k k
r
1+x°/k 1+x°/k
-
il

: -mﬁéu, s
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and hence A' > 0, a contradiction, giving the conclusion.

From Theorem 3.1,

VO - (k-1)x/k) < 1 + x2/k. (3.8)

Completing the square in (3.8) gives

v - (k-1)x/2K)% < 1 + ((k+1)x/2K)2
or since v - (k-1)x/2k > 0 from (1.2),

V< (k-1)x/2k + (1 + ((k+D)x/2K)3) 12,

or

[-1x/2k + G Dx/20) Y217 < B /g 0. (3.9)

Call the left-hand side of (3.9) the SL-bound. Then the SL-bound is uniformly
better than the BL-bound. It suffices, using (2.3), to show that, for z = x/2,

1/2 Tana 1)

k-1)° :
Y k-2 -

< (o m-2)

e 2

k-1 k+1 1/2
2)%) .
(k(k-2))

T RTANSese

+

or

o S

1.2 2 00 1
T e e R T =

(1+(1+—)2)

Squaring both sides and noting that the cross-product term on the right is

> 222/k gives the result. Consider now the SL-bound and the AL-bound. The

SL-bound will be better if

ad
[kz-kl x # (1 + ((k+1) x) ) /] >_)1Z_ _k_—§ . (3.10)
(k+2)x
since (1 + a2)/2 < a + 1723, a > 0, (3.10) will hold if
§ il K
PRI S - A
i R B B

which is true if x < kI/Z. Noting that (1 + a )I/2 > a - 1/2a for large a,

and repeating the above, shows that for large x the AL-bound is better.




e Qe e

To summarize, the SL-bound is better than the BL-bound for all positive x
and for x < vk better than the AL-bound, while for large x the AL-bound is
better.

Recall that

v ooV [-(k-1)x/K) (2v- (ke D)x/k) 5;%]=
1+x2/k 1+ xz/k Kl
= ( : Eil> Lae (V—(k-l)x/k)ng—(k+l)x/k) : 3.11)
1+x%/k 1 + x°/k

Then the second result which will give an upper bound is

Theorem 3.2: Let A' and ¢ be as in (3.11). Then, for k >2, A’ > 0 or,
equivalently, ¢ > (k-1)/k.

Proof: Suppose A' < 0 for some x. Then there exists an x such that

2 lim

¢ < (k-1)/k and ¢' = 0, since $(0) = 8, > (k-1)/k by (3.6) and T P(x]) =

K
(k-1)/k, since M™ y/x = 1 by (1.2). Now using (3.7),
x—)co

$ = [(A-(k-1)/k) (2v- (k+1)x/k) + (V-(k—l)x/k)(2X—(k+1)/k)](1+x2/k)-2(1+x2/k)x¢/k

€ * 220"

(-2x/K) $- ((k-1)/K) (2v- (k+1)x/K) + (V- (k-1)x/k) (2A- (k+1)/k)
- 5 . (3.12)
(1 + x"/k)

Suppose v < 2x/k. Then x < v < 2x/k, since v > x by (1.3), and so kx < 2x,
which is impossible since k > 2, and so v > 2x/k. Adding and subtracting
(v-2x/k) (k-1)/k to the numerator of (3.12), gives, after some simple algebra,
o' = [(v-2x/k) (- (k-1)/k) + 2(v-(k-1)x/k)(X-l)]/(1+x2/k) < 0, since

¢ < (k-1)/k by assumption and A < 1 by Theorem 3.1, which is a contradiction

and completes the proof.




From Theorem 3.2,
(v-(k-1)x/k) (2v- (k+1)x/k) > (k-l)(1+x2/k)/k, (3. 13)

and completing the square in (3.13) gives

(v- (3k-1)x/4K)% > (B(k-1)/k + ((k+1)x/k)%)/16, (3.14)

and since v > (3k-1)x/4k, (3.14) gives, after some algebra,
4/{33k-1)x/k + (8(k-1)/k + ((k+1)x/k)2)1/f] > F, ()/g(x). (3.15)

Call the left-hand side of (3.15) the SU-bound and 1/x, the bound obt.ined
from (1.3), the AU-bound. Then inspection shows that the SU-bound is always

better (smaller) than the AU-bound.

4. Analogues of Tate's Bounds
The upper and lower bounds derived here are suitable, unlike the others
in this paper, for x close to 0 - in particular they will be seen to have
the right limiting behavior as x = 0. For simplicity the subscripts of fk
and Fk will be omitted in this section. Then the first result is

Theorem 4.1: Let h = F(1-F)-f/4c,®, k > 1. Then h > 0.

Proof: Let ¢ = 1/4ck2. Now h' = f(1 - 2F) + 2c(k+1)xf2/(k(l + xz/k)),
since £' = - (ke1)xE/(k(1l + x°/k)), and hence h'(0)} = 0. Also
2 K+l 2c 12 . kel 2 x°
he= 2t e T px-2F) + —2— 26%% (- 5D« £2a - T
* k(1+x7/k) 1+x“/k
2 k+1 2cf2 2, 2
el B L N (G U PP D I 4.1)
k(1+x2/k) 1+x°/k

2 . (k+1)/2k > 0 by (3.5). There-

lim
x—)oo

e o 2 2 s
and so h"(0) = —2ck + 2cck (k+1)/k = -ch

fore h' > 0 near the origin and since h(0) = 0 and h(x) = 0, h(x) must

have a (possibly relative) maximum ahead of any (possibly relative) minima.
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Recall that for a maximum, h" < 0, and for a minimum, h" > 0. Suppose

that x is an extremum of h. Then h'(x) = 0 and hence using (4.1),

2

h" = -—353-—-7-[}(1+x2/k)2 ~eflaehl. kel
(1+x°/k)
2 4
: ___Zg___i [}1 e k;‘ -G Eil (1 + 5 - 55:]. 4.2)
(1+x%/k) k
If x is a minimum, then
-1 + c(k+1)/k > (2/k + c(k+1)(1+2/k)/k)x2 + x4/k2, (4.3)

while if x is a maximum, the inequality (4.3) is reversed. Therefore if h
has any minima, the minima must precede any maxima, which is a contradiction,
hence h has no minimum, and this proves the result.
So
2
F(1-F) > cf”,
or

-l N e 22000 < B /s, (4.4)

Call the left-hand side of (4.4) the TL-bound. For x close to the origin the
TL-bound is the best since it gives the correct limiting value of 1/2. For
large x all the other lower bounds given are better than the TL-bound. This
is shown by considering the limiting value of the ratio of the bounds as x + =,
The next theorem will be used to obtain an upper bound on Fk(x)/g(x).
Theorem 4.2: Let g = (2F-1) (1+x2/K)f - (k-1)F(1-F)x/k, k > 2. Then
g > 0.
Proof: g' = 2£2(1+x’/k) - (k-1)F(1-F)/k (4.5)

and

«10=




|
g
g

e C T e

-4 (k+1)£2x/k + 4x£2/k + (k-1) (2F-1)£/K

m_
"

_4£%x + (k-1) (2F-1)£/k. (4.6)
Note that g(0) = 0 and ii: g(x) = 0. Hence if there is an x such that

g(x) < 0, then there exists an x such that g(x) has a minimum at

< for which g(x) <0, g'(x) = 0, and g"(x) > 0. Now at x, using the definition

of g, (4.5), and (4.6), g'" may be written as

k-1 (g+ (k-1)F (1-F)x/k)
k (1+x2/K)

-4f2x +

g"

-4f2x . (k;I)Z F(l—g]x
(1+x°/k)

ftA

2 2
-4f2x 7 k;l 2xf (;+x /k) <o,
(1+x°/%k)

which is a contradiction. Hence g > 0.
Completing the square in g > 0 gives

Bl

2 2
(F + k(1+x2/k)f/(x(k—l))-l/Z)z > [k@Q+x“/k) £/ (x(k-1))]" +
or, after taking square roots and some algebra,

(1/2 + k(L+x2/K)E/ (x (k-1)) - (1/4 + [KQ+x2/K)E/ (x(k-1))]%) /2
(4.9)
Call the left-hand side of (4.9) the TU-bound. As for the TL-bound, near the

origin the TU-bound is best since it gives the correct limiting value and for

large x all the other upper bounds given here are better.

5. Analogues of Gordon's Bounds
Here Rx and its derivatives are considered. Let k > 2, and recall that,
dropping the subscript x,
R = F,(0/800 = FL ()7 ((1x°/K)E, (x)).
Then

R' = ((k-l)xR/k—l)/(1+x2/k), (5.1)

w]lle

)/g(x) > F(x)/g(x).




and the first conclusion is that R' < 0, or (k-1)xR/k < 1, or F/g < (k/(k-1))(1/x),
and this is true since the AU-bound is 1/x and therefore uniformly better. This
bound has been derived differently by Pinkham and Wilk (1963). It is instructive
to give a direct proof since this leads naturally to the second result. Note

that (k-1)xR/k < 1 at x=0 and iiz (k~-1)xR/k = (k-1)/k. Hence if (k-1)xR/k > 1,
then there exists an x for which (k-1)xR/k > 1 and é%—(k~1)xR/k =

(k-1)R/k + (k-l)((k-l)xR/k—l)/(k(1+x2/k)) = 0, but this is a contradiction since
(k-1)xR/k-1 > 0 and (k-1)R/k > 0, giving the conclusion. Call (k/ (k-1))(1/x)

the GU-bound for future reference. The next result will give a lower bound on

Fl (x)/g(x).

Theorem 5.1: R" > 0 for k 3_3.
((k-1)/K) ((k-2)x*/k+DR - (k-3)x/k

, and hence
(1ex?/K)?

Proof: Using (5.1), R" =

R" > 0 is equivalent to h(x) = R - £E:§l§££§:ll.> 0. Note that h(0) > 0 and
1+(k-2)x“/k
iig h(x) = 2/((k-1)(k-2)) > 0. So if h(x) < 0 for some x then there exists

an x such that h(x) < 0 and h'(x) = 0. Differentiating,

2
h'(x) = (k-1)xR/k-1 ::i (1 - (k-2)x"/k) (5.2)

14x2/k (1 + k-2)x2/10%

and adding and subtracting L ( (=S hx/ (k-1) ) and some algebra gives

(Lex?/10k \1+ (k-2)x/k
/
h'(x) = __155115-(R . iﬁ:élill%:ll.>+ C(1+x3/K) (1% (k-2)x2/K) 2 !
(Lex?/K)k 1+ (k-2)x° /K

([ Ra2.2 ke, k-80vun k=2 , k=3 . (k-2)(k=3) k-3 \ 2
‘(( )(k-l))x : (:z R S T e k(k-l)) 5

\\

A
+ (-1 - %}%{J <0, (5.3)
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since the first term on the right-hand side of (5.3) is < 0 by assumption and

the second negative since inspection shows every coefficient to be

negative . This is a contradiction and concludes the proof.

R" > 0 gives

(ks 3)x/(k 3}
1+ (k-2)x2/k g(x)

Call the left-hand side of (5.4) the GL-bound and assume that k >4

(5.4)

, since

for k = 3 (5.4) is trivially true. Comparison to the AL-bound shows that up

to an x the GL-bound is better and then the AL-bound is better. Consider now

the comparison to the SL-bound. The SL-bound is better for all x for which

e+ 523> X3 &Ly 0w (DX

. k+1)x) )1/2).

After some algebra, (5.5) is equivalent to

1+ k-Dx%/2607 > ((k-3)x/(k-1))% (1 + ((k+1)x/2Kk) 2

(5.5)

(5.6)

and comparing the coefficients of'xzand x4 on both sides, (5.6) is seen to be

true for all positive x. Hence the SL-bound is better than the GL-bound.

6. Numerical Comparisons

In Table 1, the bounds obtained in this paper are given for some selected

k and x. A "-" indicates that the bound is negative.

1. Lower and Upper Bounds for Fk (x)/g(x)

Degrees of freedom

6 10 20
Bounds X
.5 1.5 3.0 .5 1.5 3.0 . S 1.5 3.0
BL .761 484 - .292 775 495 .299 779 .499 .302

(AL,AU) (——,2.C00) (.444,.667) (.306,.333) (—,2.000) (.420,.667) (.302,.333) (~— ,2.000) (.397,.667) (.360,.333)

(GL,GU) (.257,2.400) (.360,.800) (.257,.400) (.324,2.222) (.417,.741) (.285,.370) (.365,2.105) (.444,.
(SL,SU) (.800, .984) (.512,.543) (.306,.311) (.792, .955) (.S507,.533) (.305,.309) (.787, .934) (.504,
(TL,TU) (.725,1.044) (.160,.692) (.0106,.394) (.736,1.012) (.177,.656) (00991,367)(.744, .989) (.191,

702) (.295,.351)

.526) (.304,.307)
.632) (.0088S, 349)




It can be seen that for thecases considered the SL-bound is the best among
the lower bounds and the SU-bound the best among the upper. It is thus of
interest what kind of approximations can be obtained to Fk(x) using the

S-bounds multiplied by g(x) as the approximation. This is done in Table 2 ?
for selected degrees of freedom and known t percentile (Cramer, 1946, p. 560).

Here L = (SL-bound)°*g(x) and U = (SU-bound)-*g(x).

k.

2. S-Approximations to ?k(x)

Degrees of Freedom

Fk(x) 6 20 120
x L u x L el x L ]
i 1.440 .0956 .102 1.325 .0959 .101 1.289 .0959 .101
.05 1.943 .0487 .0505 1.725 .0486 .0503  1.658 .0487 .0502
) .025  2.447 .0246 .0252 2.086 .0245 .0251  1.980 .0245 .0251

.010 3.143 .00989 .0100 2.528 .00988 .0100 2.358 .00988 .0100
.005 3.707 .00496 .00502 2.845 .00496 .00501 2.617 .00496 .00501

.0005 5.959 .000498 .000500 3.850 .000497 .000500 3.373 .000498 .000501

From Table 2 it appears that the approximation using the SU-bound gives

good results if Fk(x) is less than or equal to .1.
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